New family of Jacobi-Stirling numbers

نویسندگان

چکیده

The Jacobi-Stirling numbers of the first and second kind were introduced in 2007 by Everitt et al. In this article we find new explicit formulas for Jacobi Stirling numbers. Furthermore, derive study class so-called generalized Some special cases such as Legendre-Stirling are given. interesting combinatorial identities obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Interpretations of the Jacobi-Stirling Numbers

The Jacobi-Stirling numbers of the first and second kinds were introduced in the spectral theory and are polynomial refinements of the Legendre-Stirling numbers. Andrews and Littlejohn have recently given a combinatorial interpretation for the second kind of the latter numbers. Noticing that these numbers are very similar to the classical central factorial numbers, we give combinatorial interpr...

متن کامل

Convolution Properties of the Generalized Stirling Numbers and the Jacobi-Stirling Numbers of the First Kind

In this paper, we establish several properties of the unified generalized Stirling numbers of the first kind, and the Jacobi-Stirling numbers of the first kind, by means of the convolution principle of sequences. Obtained results include generalized Vandermonde convolution for the unified generalized Stirling numbers of the first kind, triangular recurrence relation for general Stirling-type nu...

متن کامل

On a New Family of Generalized Stirling and Bell Numbers

A new family of generalized Stirling and Bell numbers is introduced by considering powers (V U)n of the noncommuting variables U, V satisfying UV = V U +hV s. The case s = 0 (and h = 1) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they a...

متن کامل

q-Stirling numbers: A new view

We show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1+q. We extend this enumerative result via a decomposition of a new poset Π(n, k) which we call the Stirling poset of the second kind. Its rank generating function is the q-Stirling number S...

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis and Discrete Mathematics

سال: 2023

ISSN: ['1452-8630', '2406-100X']

DOI: https://doi.org/10.2298/aadm210829013c